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ABSTRACT
Temporal action detection is a very important yet challenging prob-
lem, since videos in real applications are usually long, untrimmed
and contain multiple action instances. This problem requires not
only recognizing action categories but also detecting start time and
end time of each action instance. Many state-of-the-art methods
adopt the "detection by classi�cation" framework: �rst do proposal,
and then classify proposals. The main drawback of this framework
is that the boundaries of action instance proposals have been �xed
during the classi�cation step. To address this issue, we propose
a novel Single Shot Action Detector (SSAD) network based on
1D temporal convolutional layers to skip the proposal generation
step via directly detecting action instances in untrimmed video.
On pursuit of designing a particular SSAD network that can work
e�ectively for temporal action detection, we empirically search
for the best network architecture of SSAD due to lacking exist-
ing models that can be directly adopted. Moreover, we investigate
into input feature types and fusion strategies to further improve
detection accuracy. We conduct extensive experiments on two chal-
lenging datasets: THUMOS 2014 and MEXaction2. When setting
Intersection-over-Union threshold to 0.5 during evaluation, SSAD
signi�cantly outperforms other state-of-the-art systems by increas-
ing mAP from 19.0% to 24.6% on THUMOS 2014 and from 7.4% to
11.0% on MEXaction2.

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding;
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1 INTRODUCTION
Due to the continuously booming of videos on the internet, video
content analysis has attracted wide attention from both industry
and academic �eld in recently years. An important branch of video
content analysis is action recognition, which usually aims at classi-
fying the categories of manually trimmed video clips. Substantial
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Figure 1: Overview of our system. Given an untrimmed long
video, (1) we extract Snippet-level Action Score features se-
quence with multiple action classi�ers; (2) SSAD network
takes feature sequence as input and directly predicts multi-
ple scales action instanceswithout proposal generation step.

progress has been reported for this task in [6, 24, 36, 38, 40]. How-
ever, most videos in real world are untrimmed and may contain
multiple action instances with irrelevant background scenes or ac-
tivities. This problem motivates the academic community to put
attention to another challenging task - temporal action detection.
This task aims to detect action instances in untrimmed video, in-
cluding temporal boundaries and categories of instances. Methods
proposed for this task can be used in many areas such as surveil-
lance video analysis and intelligent home care.

Temporal action detection can be regarded as a temporal version
of object detection in image, since both of the tasks aim to deter-
mine the boundaries and categories of multiple instances (actions
in time/ objects in space). A popular series of models in object
detection are R-CNN and its variants [8, 9, 27], which adopt the
"detect by classifying region proposals" framework. Inspired by
R-CNN, recently many temporal action detection approaches adopt
similar framework and classify temporal action instances generated
by proposal method [3, 5, 29, 43] or simple sliding windows method
[15, 23, 39]. This framework may has some major drawbacks: (1)
proposal generation and classi�cation procedures are separate and
have to be trained separately, but ideally we want to train them in
a joint manner to obtain an optimal model; (2) the proposal genera-
tion method or sliding windows method requires additional time
consumption; (3) the temporal boundaries of action instances gen-
erated by the sliding windows method are usually approximative
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rather than precise and left to be �xed during classi�cation. Also,
since the scales of sliding windows are pre-determined, it is not
�exible to predict instances with various scales.

To address these issues, we propose the Single Shot Action De-
tector (SSAD) network, which is a temporal convolutional network
conducted on feature sequence with multiple granularities. Inspired
by another set of object detection methods - single shot detection
models such as SSD [20] and YOLO [25, 26], our SSAD network
skips the proposal generation step and directly predicts temporal
boundaries and con�dence scores for multiple action categories,
as shown in Figure 1. SSAD network contains three sub-modules:
(1) base layers read in feature sequence and shorten its temporal
length; (2) anchor layers output temporal feature maps, which are
associated with anchor action instances; (3) prediction layers gen-
erate categories probabilities, location o�sets and overlap scores of
these anchor action instances.

For better encoding of both spatial and temporal information in
video, we adopt multiple action recognition models (action classi-
�ers) to extract multiple granularities features. We concatenate the
output categories probabilities from all action classi�ers in snippet-
level and form the Snippet-level Action Score (SAS) feature. The
sequences of SAS features are used as input of SSAD network.

Note that it is non-trivial to adapt the single shot detection model
from object detection to temporal action detection. Firstly, unlike
VGGNet [31] being used in 2D ConvNet models, there is no existing
widely used pre-trained temporal convolutional network. Thus in
this work, we search multiple network architectures to �nd the
best one. Secondly, we integrate key advantages in di�erent single
shot detection models to make our SSAD network work the best.
On one hand, similar to YOLO9000 [26], we simultaneously predict
location o�sets, categories probabilities and overlap score of each
anchor action instance. On the other hand, like SSD [20], we use
anchor instances of multiple scale ratios from multiple scales feature
maps, which allow network �exible to handle action instance with
various scales. Finally, to further improve performance, we fuse
the prediction categories probability with temporal pooled snippet-
level action scores during prediction.

The main contributions of our work are summarized as follows:
(1) To the best of our knowledge, our work is the �rst Single Shot

Action Detector (SSAD) for video, which can e�ectively predict both
the boundaries and con�dence score of multiple action categories
in untrimmed video without the proposal generation step.

(2) In this work, we explore many con�gurations of SSAD net-
work such as input features type, network architectures and post-
processing strategy. Proper con�gurations are adopted to achieve
better performance for temporal action detection task.

(3) We conduct extensive experiments on two challenging bench-
mark datasets: THUMOS’14 [14] and MEXaction2 [1]. When setting
Intersection-over-Union threshold to 0.5 during evaluation, SSAD
signi�cantly outperforms other state-of-the-art systems by increas-
ing mAP from 19.0% to 24.6% on THUMOS’14 and from 7.4% to
11.0% on MEXaction2.

2 RELATEDWORK
Action recognition. Action recognition is an important research
topic for video content analysis. Just as image classi�cation network

can be used in image object detection, action recognition models
can be used in temporal action detection for feature extraction. We
mainly review the following methods which can be used in temporal
action detection. Improved Dense Trajectory (iDT) [37, 38] feature
is consisted of MBH, HOF and HOG features extracted along dense
trajectories. iDT method uses SIFT and optical �ow to eliminate
the in�uence of camera motion. Two-stream network [6, 30, 40]
learns both spatial and temporal features by operating network
on single frame and stacked optical �ow �eld respectively using
2D Convolutional Neural Network (CNN) such as GoogleNet [35],
VGGNet [31] and ResNet [12]. C3D network [36] uses 3D convolu-
tion to capture both spatial and temporal information directly from
raw video frames volume, and is very e�cient. Feature encoding
methods such as Fisher Vector [38] and VAE [24] are widely used
in action recognition task to improve performance. And there are
many widely used action recognition benchmark such as UCF101
[34], HMDB51 [18] and Sports-1M [16].

Temporal action detection. This task focuses on learning how
to detect action instances in untrimmed videos where the bound-
aries and categories of action instances have been annotated. Typi-
cal datasets such as THUMOS 2014 [14] and MEXaction2 [1] include
large amount of untrimmed videos with multiple action categories
and complex background information.

Recently, many approaches adopt "detection by classi�cation"
framework. For examples, many approaches [15, 23, 33, 39, 41]
use extracted feature such as iDT feature to train SVM classi�ers,
and then classify the categories of segment proposals or sliding
windows using SVM classi�ers. And there are some approaches
specially proposed for temporal action proposal [3, 5, 7, 22, 43]. Our
SSAD network di�ers from these methods mainly in containing no
proposal generation step.

Recurrent Neural Network (RNN) is widely used in many action
detection approaches [21, 32, 42, 44] to encode feature sequence
and make per-frame prediction of action categories. However, it is
di�cult for RNNs to keep a long time period memory in practice
[32]. An alternative choice is temporal convolution. For example,
Lea et al. [19] proposes Temporal Convolutional Networks (TCN)
for temporal action segmentation. We also adopt temporal convo-
lutional layers, which makes our SSAD network can handle action
instances with a much longer time period.

Object detection.Deep learning approaches have shown salient
performance in object detection. We will review two main set of ob-
ject detection methods proposed in recent years. The representative
methods in �rst set are R-CNN [9] and its variations [8, 27]. R-CNN
uses selective search to generate multiple region proposals then
apply CNN in these proposals separately to classify their categories;
Fast R-CNN [8] uses a 2D RoI pooling layer which makes feature
map be shared among proposals and reduces the time consump-
tion. Faster RCNN [27] adopts a RPN network to generate region
proposal instead of selective search.

Another set of object detection methods are single shot detection
methods, which means detecting objects directly without generat-
ing proposals. There are two well known models. YOLO [25, 26]
uses the whole topmost feature map to predict probabilities of mul-
tiple categories and corresponding con�dence scores and location
o�sets. SSD [20] makes prediction from multiple feature map with
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Figure 2: The framework of our approach. (a) Multiple action classi�ers are used to extract Snippet-level Action Scores (SAS)
feature. (b) The architecture of SSAD network: base layers are used to reduce the temporal dimension of input data; anchor
layers output multiple scale feature map associated with anchor instances and prediction layers are used for predicting cat-
egories, location and con�dence of anchor instances. (c) The training and prediction procedures: during training, we match
anchor instances with ground truth instances and calculate loss function for optimization. During prediction, post-processing
and NMS procedure are conducted on anchor instances to make �nal prediction.

multiple scales default boxes. In our work, we combine the charac-
teristics of these single shot detection methods and embed them
into the proposed SSAD network.

3 OUR APPROACH
In this section, we will introduce our approach in details. The frame-
work of our approach is shown in Figure 2.

3.1 Problem De�nition
We denote a video as Xv = {xt }

Tv
t=1 where Tv is the number of

frames in Xv and xt is the t-th frame in Xv . Each untrimmed
video Xv is annotated with a set of temporal action instances Φv ={
ϕn =

(
φn ,φ

′
n ,kn

)}Nv
n=1, where Nv is the number of temporal action

instances in Xv , and φn ,φ ′n ,kn are starting time, ending time and
category of action instance ϕn respectively. kn ∈ {1, ...,K } where
K is the number of action categories. Φv is given during training
procedure and need to be predicted during prediction procedure.

3.2 Extracting of Snippet-level Action Scores
To apply SSAD model, �rst we need to make snippet-level action
classi�cation and get Snippet-level Action Score (SAS) features.
Given a video Xv , a snippet st = (xt ,Ft ,Xt ) is composed by three
parts: xt is the t-th frame in Xv , Ft =

{
ft ′

}t+5
t ′=t−4 is stacked optical

�ow �eld derived around xt and Xt = {xt ′ }
t+8
t ′=t−7 is video frames

volume. So given a video Xv , we can get a sequence of snippets
Sv = {st }

Tv
t=1. We pad the video Xv in head and tail with �rst and

last frame separately to make Sv have the same length as Xv .
Action classi�er. To evaluate categories probability of each

snippet, we use multiple action classi�ers with commendable per-
formance in action recognition task: two-stream network [30] and
C3D network [36]. Two-stream network includes spatial and tem-
poral networks which operate on single video frame xt and stacked
optical �ow �eld Ft respectively. We use the same two-stream net-
work architecture as described in [40], which adopts VGGNet-16
network architecture. C3D network is proposed in [36], including
multiple 3D convolution layers and 3D pooling layers. C3D network
operates on short video frames volume Xt with length l , where l is
the length of video clip and is set to 16 in C3D. So there are totally
three individual action classi�ers, in which spatial network mea-
sures the spatial information, temporal network measures temporal
consistency and C3D network measures both. In section 4.3, we
evaluate the e�ect of each action classi�er and their combinations.

SAS feature. As shown in Figure 2(a), given a snippet st , each
action classi�er can generate a score vector pt with length K ′ =
K + 1, where K ′ includes K action categories and one background
category. Then we concatenate output scores of each classi�ers
to form the Snippet-level Action Score (SAS) feature psas,t =
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(
pS ,t ,pT ,t ,pC ,t

)
, wherepS ,t ,pT ,t ,pC ,t are output score of spatial,

temporal and C3D network separately. So given a snippets sequence
Sv with length Tv , we can extract a SAS feature sequence Pv ={
psas,t

}Tv
t=1. Since the number of frames in video is uncertain and

may be very large, we use a large observation window with length
Tw to truncate the feature sequence. We denote a window as ω ={
φω ,φ

′
ω ,Pω ,Φω

}, where φω and φ ′ω are starting and ending time of
ω, Pω and Φω are SAS feature sequence and corresponding ground
truth action instances separately.

3.3 SSAD Network
Temporal action detection is quite di�erent from object detection
in 2D image. In SSAD we adopt two main characteristics from
single shot object detection models such as SSD [20] and YOLO
[25, 26]: 1) unlike "detection by classi�cation" approaches, SSAD
directly predicts categories and location o�sets of action instances
in untrimmed video using convolutional prediction layers; 2) SSAD
combine temporal feature maps from di�erent convolution layers
for prediction, making it possible to handle action instances with
various length. We �rst introduce the network architecture.

Network architecture. The architecture of SSAD network is
presented in Figure 2(b), which mainly contains three sub-modules:
base layers, anchor layers and prediction layers. Base layers handle
the input SAS feature sequence, and use both convolution and
pooling layer to shorten the temporal length of feature map and
increase the size of receptive �elds. Then anchor layers use temporal
convolution to continually shorten the feature map and output
anchor feature map for action instances prediction. Each cell of
anchor layers is associated with anchor instances of multiple scales.
Finally, we use prediction layers to get classi�cation score, overlap
score and location o�sets of each anchor instance.

In SSAD network, we adopt 1D temporal convolution and pool-
ing to capture temporal information. We conduct Recti�ed Linear
Units (ReLu) activation function [11] to output temporal feature
map except for the convolutional prediction layers. And we adopt
temporal max pooling since max pooling can enhance the invari-
ance of small input change.

Base layers. Since there are no widely used pre-trained 1D
ConvNet models such as the VGGNet [31] used in 2D ConvNet
models, we search many di�erent network architectures for SSAD
network. These architectures only di�er in base layers while we
keep same architecture of anchor layers and prediction layers. As
shown in Figure 3, we totally design 5 architectures of base layers. In
these architectures, we mainly explore three aspects: 1) whether use
convolution or pooling layer to shorten the temporal dimension and
increase the size of receptive �elds; 2) number of layers of network
and 3) size of convolution layer’s kernel. Notice that we set the
number of convolutional �lter in all base layers to 256. Evaluation
results of these architectures are shown in section 4.3, and �nally
we adopt architecture B which achieves the best performance.

Multi-scale anchor layers. After processing SAS feature se-
quence using base layers, we stack three anchor convolutional
layers (Conv-A1, Conv-A2 and Conv-A3) on them. These layers
have same con�guration: kernel size 3, stride size 2 and 512 convo-
lutional �lters. The output anchor feature maps of anchor layers
are fA1, fA2 and fA3 with size (Tw /32 × 512), (Tw /64 × 512) and

Figure 3:Multiple architectures of base layers. Input and out-
put sizes are same for each architecture. Parameter of layer
is shown with the format of kernel/stride. All convolutional
layers have 512 convolutional �lters. Evaluation results of
these architectures are shown in section 4.3, and we adopt
architecture B which achieves the best performance.

(Tw /128 × 512) separately. Multiple anchor layers decrease tem-
poral dimension of feature map progressively and allow SSAD get
predictions from multiple resolution feature map.

For each temporal feature map of anchor layers, we associate a
set of multiple scale anchor action instances with each feature map
cell as shown in Figure 4. For each anchor instance, we use con-
volutional prediction layers to predict overlap score, classi�cation
score and location o�sets, which will be introduced later.

In term of the details of multi-scale anchor instances, the lower
anchor feature map has higher resolution and smaller receptive
�eld than the top anchor feature map. So we let the lower anchor
layers detect short action instances and the top anchor layers detect
long action instances. For a temporal feature map f of anchor layer
with length M , we de�ne base scale sf =

1
M and a set of scale

ratios Rf =
{
rd

}Df

d=1, where Df is the number of scale ratios. We
use {1,1.5,2} for fA1 and {0.5,0.75,1,1.5,2} for fA2 and fA3. For
each ratio rd , we calculate µw = sf · rd as anchor instance’s default
width. And all anchor instances associated with them-th feature
map cell share the same default center location µc =

m+0.5
M . So for

an anchor feature map f with length Mf and Df scale ratios, the
number of associated anchor instances is Mf · Df .

Prediction layers. We use a set of convolutional �lters to pre-
dict classi�cation scores, overlap scores and location o�sets of
anchor instances associated with each feature map cell. As shown
in Figure 4, for an anchor feature map f with length Mf and Df
scale ratios, we use Df · (K

′ + 3) temporal convolutional �lters
with kernel size 3, stride size 1 for prediction. The output of pre-
diction layer has size

(
Mf ×

(
Df · (K

′ + 3)
))

and can be reshaped
into

((
Mf · Df

)
× (K ′ + 3)

)
. Each anchor instance gets a prediction

score vector ppr ed =
(
pclass ,pover ,∆c,∆w

) with length (K ′ + 3),
where pclass is classi�cation score vector with length K ′, pover is
overlap score and ∆c , ∆w are location o�sets. Classi�cation score
pclass is used to predict anchor instance’s category. Overlap score
pover is used to estimate the overlap between anchor instance and
ground truth instances and should have value between [0,1], so it
is normalized by using sigmoid function:
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Figure 4: Anchor instances and prediction layer in temporal
feature map. In feature map of a anchor layer, we associate
a set of multiple scale anchor instances with each feature
map cell. We use convolutional prediction layer to predict
location o�set, con�dence and classi�cation scores simulta-
neously for each anchor instance.

p′over = siдmoid (pover ). (1)
And location o�sets ∆c , ∆w are used for adjusting the default

location of anchor instance. The adjusted location is de�ned as:

φc = µc + α1 · µw · ∆c

φw = µw · exp (α2 · ∆w ),
(2)

where φc and φw are center location and width of anchor instance
respectively. α1 and α2 are used for controlling the e�ect of location
o�sets to make prediction stable. We set both α1 and α2 to 0.1. The
starting and ending time of action instance are φ = φc − 1

2 ·φw and
φ ′ = φc +

1
2 ·φw respectively. So for a anchor feature map f , we can

get a anchor instances set Φf =
{
ϕn =

(
φc ,φw ,pclass ,p

′
over

)}Nf
n=1,

where Nf = Mf · Df is the number of anchor instances. And the
total prediction instances set is Φp =

{
ΦfA1 ,ΦfA2 ,ΦfA3

}
.

3.4 Training of SSAD network
Training data construction. As described in Section 3.2, for an
untrimmed video Xv with lengthTv , we get SAS features sequence
Pv with same length. Then we slide window of lengthTw in feature
sequence with 75% overlap. The overlap of sliding window is aim
to handle the situation where action instances locate in boundary
of window and also used to increase the amount of training data.
During training, we only keep windows containing at least one
ground-truth instance. So given a set of untrimmed training videos,
we get a training set Ω = {ωn }Nω

n=1, where Nω is the number of
windows. We randomly shu�e the data order in training set to
make the network converge faster, where same random seed is
used during evaluation.

Label assignment. During training, given a window ω, we can
get prediction instances setΦp via SSAD network. We need to match
them with ground truth set Φω for label assignment. For an anchor
instanceϕn inΦp , we calculate it’s IoU overlap with all ground truth

instances in Φω . If the highest IoU overlap is higher than 0.5, we
match ϕn with corresponding ground truth instance ϕд and regard
it as positive, otherwise negative. We expand ϕn with matching
information asϕ ′n =

(
φc ,φw ,pclass ,p

′
over ,kд ,дiou ,дc ,дw

)
, where

kд is the category of ϕд and is set to 0 for negative instance, дiou is
the IoU overlap between ϕn and ϕд , дc and дw are center location
and width of ϕд respectively. So a ground truth instance can match
multiple anchor instances while a anchor instance can only match
one ground truth instance at most.

Hard negative mining. During label assignment, only a small
part of anchor instances match the ground truth instances, causing
an imbalanced data ratio between the positive and negative in-
stances. Thus we adopt the hard negative mining strategy to reduce
the number of negative instances. Here, the hard negative instances
are de�ned as negative instances with larger overlap score than
0.5. We take all hard negative instances and randomly sampled
negative instances in remaining part to make the ratio between
positive and negative instances be nearly 1:1. This ratio is chosen
by empirical validation. So after label assignment and hard negative
mining, we get Φ′p =

{
ϕ ′n

}Ntrain
n=1 as the input set during training,

where Ntrain is the number of total training instances and is the
sum of the number of positives Npos and negatives Nneд .

Objective for training. The training objective of the SSAD net-
work is to solve a multi-task optimization problem. The overall
loss function is a weighted sum of the classi�cation loss (class), the
overlap loss (conf), the detection loss (loc) and L2 loss for regular-
ization:

L = Lclass + α · Lover + β · Lloc + λ · L2 (Θ), (3)
where α , β and λ are the weight terms used for balancing each part
of loss function. Both α and β are set to 10 and λ is set to 0.0001 by
empirical validation. For the classi�cation loss, we use conventional
softmax loss over multiple categories, which is e�ective for training
classi�cation model and can be de�ned as:

Lclass = Lsof tmax =
1

Ntrain

Ntrain∑
i=1

(−loд(P
(kд )
i )), (4)

where P (kд )i =
exp (p

(kд )

class,i )∑
j exp (p

(kj )
class,i )

and kд is the label of this instance.

Lover is used to make a precise prediction of anchor instances’
overlap IoU score, which helps the procedure of NMS. The overlap
loss adopts the mean square error (MSE) loss and be de�ned as:

Lover =
1

Ntrain

Ntrain∑
i=1

(p′over ,i − дiou,i ). (5)

Lloc is the Smooth L1 loss [8] for location o�sets. We regress the
center (ϕc ) and width (ϕw ) of predicted instance:

Lloc =
1

Npos

Npos∑
i=1

(SL1 (ϕc,i − дc,i ) + SL1 (ϕw,i − дw,i )), (6)

where дc,i and дw,i is the center location and width of ground truth
instance. L2 (Θ) is the L2 regularization loss where Θ stands for the
parameter of the whole SSAD network.
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3.5 Prediction and post-processing
During prediction, we follow the aforementioned data preparation
method during the training procedure to prepare test data, with the
following two changes: (1) the overlap ratio of window is reduced
to 25% to increase the prediction speed and reduce the redundant
predictions; (2) instead of removing windows without annotation,
we keep all windows during prediction because the removing oper-
ation is actually a leak of annotation information. If the length of
input video is shorter than Tw , we will pad SAS feature sequence
to Tw so that there is at least one window for prediction. Given
a video Xv , we can get a set of Ω = {ωn }Nω

n=1. Then we use SSAD
network to get prediction anchors of each window and merge these
prediction as Φp =

{
ϕn

}Np
n=1, where Np is the number of prediction

instances. For a prediction anchor instance ϕn in Φp , we calcu-
late the mean Snippet-level Action Score p̄sas among the temporal
range of instance and multiple action classi�ers.

p̄sas =
1

3 · (φ ′ − φ)

φ ′∑
t=φ

(
pS,t + pT ,t + pC,t

)
, (7)

where φ and φ ′ are starting and ending time of prediction anchor
instance respectively. Then we fuse categories scores p̄sas and
pclass with multiplication factor pconf and get the pf inal :

pf inal = p
′
over · (pclass + p̄sas ) . (8)

We choose the maximum dimension kp in pf inal as the category
of ϕn and corresponding score pconf as the con�dence score. We
expand ϕn as ϕ ′n =

{
φc ,φw ,pconf ,kp

}
and get prediction set Φ′p ={

ϕ ′n
}Np
n=1. Then we conduct non-maximum suppress (NMS) in these

prediction results to remove redundant predictions with con�dence
scorepconf and get the �nal prediction instances set Φ′′p =

{
ϕ ′n

}Np′

n=1,
where Np′ is the number of the �nal prediction anchors. Since there
are little overlap between action instances of same category in
temporal action detection task, we take a strict threshold in NMS,
which is set to 0.1 by empirical validation.

4 EXPERIMENTS
4.1 Dataset and setup
THUMOS 2014 [14]. The temporal action detection task of THU-
MOS 2014 dataset is challenging and widely used. The training
set is the UCF-101 [34] dataset including 13320 trimmed videos of
101 categories. The validation and test set contain 1010 and 1574
untrimmed videos separately. In temporal action detection task,
only 20 action categories are involved and annotated temporally.
We only use 200 validation set videos (including 3007 action in-
stances) and 213 test set videos (including 3358 action instances)
with temporal annotation to train and evaluate SSAD network.

MEXaction2 [1]. There are two action categories in MEXac-
tion2 dataset: "HorseRiding" and "BullChargeCape". This dataset
is consisted of three subsets: YouTube clips, UCF101 Horse Rid-
ing clips and INA videos. YouTube and UCF101 Horse Riding clips
are trimmed and used for training set, whereas INA videos are
untrimmed with approximately 77 hours in total and are divided

into training, validation and testing set. Regarding to temporal an-
notated action instances, there are 1336 instances in training set,
310 instances in validation set and 329 instances in testing set.

Evaluation metrics. For both datasets, we follow the conven-
tional metrics used in THUMOS’14, which evaluate Average Preci-
sion (AP) for each action categories and calculate mean Average
Precision (mAP) for evaluation. A prediction instance is correct if
it gets same category as ground truth instance and its temporal
IoU with this ground truth instance is larger than IoU threshold θ .
Various IoU thresholds are used during evaluation. Furthermore,
redundant detections for the same ground truth are forbidden.

4.2 Implementation Details
Action classi�ers.To extract SAS features, action classi�ers should
be trained �rst, including two-stream networks [40] and C3D net-
work [36]. We implement both networks based on Ca�e [13]. For
both MEXaction and THUMOS’14 datasets, we use trimmed videos
in training set to train action classi�er.

For spatial and temporal network, we follow the same training
strategy described in [40] which uses the VGGNet-16 pre-trained on
ImageNet [4] to intialize the network and �ne-tunes it on training
set. And we follow [36] to train the C3D network, which is pre-
trained on Sports-1M [16] and then is �ne-turned on training set.

SSAD optimization. For training of the SSAD network, we use
the adaptive moment estimation (Adam) algorithm [17] with the
aforementioned multi-task loss function. Our implementation is
based on Tensor�ow [2]. We adopt the Xavier method [10] to ran-
domly initialize parameters of whole SSAD network because there
are no suitable pre-trained temporal convolutional network. Even
so, the SSAD network can be easily trained with quick convergence
since it has a small amount of parameters (20 MB totally) and the
input of SSAD network - SAS features are concise high-level feature.
The training procedure takes nearly 1 hour on THUMOS’14 dataset.

Table 1: mAP results on THUMOS’14 with various IoU
threshold θ used in evaluation.

θ 0.5 0.4 0.3 0.2 0.1
Karaman et al. [15] 0.2 0.3 0.5 0.9 1.5

Wang et al. [39] 8.5 12.1 14.6 17.8 19.2
Oneata et al. [23] 15.0 21.8 28.8 36.2 39.8
Richard et al. [28] 15.2 23.2 30.0 35.7 39.7
Yeung et al. [42] 17.1 26.4 36.0 44.0 48.9
Yuan et al. [44] 18.8 26.1 33.6 42.6 51.4
Shou et al. [29] 19.0 28.7 36.3 43.5 47.7
Zhu et al. [45] 19.0 28.9 36.2 43.6 47.7

SSAD 24.6 35.0 43.0 47.8 50.1

4.3 Comparison with state-of-the-art systems
Results on THUMOS 2014. To train action classi�ers, we use full
UCF-101 dataset. Instead of using one background category, here
we form background categories using 81 action categories which
are un-annotated in detection task. Using two-stream and C3D
networks as action classi�ers, the dimension of SAS features is 303.
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Figure 5: Detection AP over di�erent action categories with overlap threshold 0.5 in THUMOS’14.

Table 2: Results on MEXaction2 dataset with overlap thresh-
old 0.5. Results for [1] are taken from [29].

AP(%) BullCHargeCape HorseRiding mAP(%)
DTF [1] 0.3 3.1 1.7

SCNN [29] 11.6 3.1 7.4
SSAD 16.5 5.5 11.0

For training of SSAD model, we use 200 annotated untrimmed
video in THUMOS’14 validation set as training set. The window
length Lw is set to 512, which means approximately 20 seconds of
video with 25 fps. This choice is based on the fact that 99.3% action
instances in the training set have smaller length than 20 seconds.
We train SSAD network for 30 epochs with learning rate of 0.0001.

The comparison results between our SSAD and other state-of-
the-art systems are shown in Table 1 with multiple overlap IoU
thresholds varied from 0.1 to 0.5. These results show that SSAD
signi�cantly outperforms the compared state-of-the-art methods.
While the IoU threshold used in evaluation is set to 0.5, our SSAD
network improves the state-of-the-art mAP result from 19.0% to
24.6%. The Average Precision (AP) results of all categories with
overlap threshold 0.5 are shown in Figure 5, the SSAD network
outperforms other state-of-the-art methods for 7 out of 20 action
categories. Qualitative results are shown in Figure 6.

Results on MEXaction2. For training of action classi�ers, we
use all 1336 trimmed video clips in training set. And we randomly
sample 1300 background video clips in untrimmed training videos.
The prediction categories of action classi�ers are "HorseRiding",
"BullChargeCape" and "Background". So the dimension of SAS fea-
tures equals to 9 in MEXaction2.

For SSAD model, we use all 38 untrimmed video in MEXaction2
training set training set. Since the distribution of action instances’
length in MEXaction2 is similar with THUMOS’14, we also set the
interval of snippets to zero and the window length Tw to 512. We
train all layers of SSAD for 10 epochs with learning rate of 0.0001.

We compare SSAD with SCNN [29] and typical dense trajec-
tory features (DTF) based method [1]. Both results are provided
by [29]. Comparison results are shown in Table 2, our SSAD net-
work achieve signi�cant performance gain in all action categories

Table 3: Comparisons between di�erent action classi�ers
used in SSAD on THUMOS’14, where two-stream network
includes both spatial and temporal networks.

Action Classi�er used for SAS Feature mAP (θ = 0.5)
C3D Network 20.9

Two-Stream Network 21.9
Two-Stream Network+C3D Network 24.6

Table 4: Comparisons amongmultiple base layers con�gura-
tions on THUMOS’14. A, B, C, D, E are base layers con�gura-
tions which presented in Figure 3.

Network Con�guration A B C D E
mAP(θ = 0.5) 23.7 24.6 24.1 23.9 23.4

of MEXaction2 and the mAP is increased from 7.4% to 11.0% with
overlap threshold 0.5. Figure 6 shows the visualization of prediction
results for two action categories respectively.

4.4 Model Analysis
We evaluate SSAD network with di�erent variants in THUMOS’14
to study their e�ects, including action classi�ers, architectures of
SSAD network and post-processing strategy.

Action classi�ers. Action classi�ers are used to extract SAS
feature. To study the contribution of di�erent action classi�ers, we
evaluate them individually and coherently with IoU threshold 0.5.
As shown in Table 3, two-stream networks show better performance
than C3D network and the combination of two-stream and C3D
network lead to the best performance. In action recognition task
such as UCF101, two-stream network [40] achieve 91.4%, which is
better than 85.2% of C3D [36] network (without combining with
other method such as iDT [38]). So two-stream network can predict
action categories more precisely than C3D in snippet-level, which
leads to a better performance of the SSAD network. Furthermore,
the SAS feature extracted by two-stream network and C3D network
are complementary and can achieve better result if used together.
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Figure 6: Visualization of prediction action instances by SSAD network. Figure (a) shows prediction results for two action
categories in THUMOS’14 dataset. Figure (b) shows prediction results for two action categories in MEXaction2 dataset.

Table 5: Evaluation on di�erent post-processing strategy on
THUMOS’14.

pclass ! ! ! !

psas ! ! ! !

pover ! ! !

mAP (θ = 0.5) 22.8 13.4 24.3 19.8 23.3 24.6

Architectures of SSAD network. In section 3.3, we discuss
several architectures used for base network of SSAD. These archi-
tectures have same input and output size. So we can evaluate them
fairly without other changes of SSAD. The comparison results are
shown in Table 4. Architecture B achieves best performance among
these con�gurations and is adopted for SSAD network. We can
draw two conclusions from these results: (1) it is better to use max
pooling layer instead of temporal convolutional layer to shorten
the length of feature map; (2) convolutional layers with kernel size
9 have better performance than other sizes.

Post-processing strategy.We evaluate multiple post-processing
strategies. These strategies di�er in the way of late fusion to gener-
ate pf inal and are shown in Table 5. For example, pclass is used

for generate pf inal if it is ticked in table. Evaluation results are
shown in Table 5. For the categories score, we can �nd that pclass
has better performance than p̄sas . And using the multiplication
factor pover can further improve the performance. SSAD network
achieves the best performance with the complete post-processing
strategy.

5 CONCLUSION
In this paper, we propose the Single Shot Action Detector (SSAD)
network for temporal action detection task. Our SSAD network
drops the proposal generation step and can directly predict action
instances in untrimmed video. Also, we have explored many con�g-
urations of SSAD network to make SSAD network work better for
temporal action detection. When setting Intersection-over-Union
threshold to 0.5 during evaluation, SSAD signi�cantly outperforms
other state-of-the-art systems by increasing mAP from 19.0% to
24.6% on THUMOS’14 and from 7.4% to 11.0% on MEXaction2.
In our approach, we conduct feature extraction and action detec-
tion separately, which makes SSAD network can handle concise
high-level features and be easily trained. A promising future direc-
tion is to combine feature extraction procedure and SSAD network
together to form an end-to-end framework, so that the whole frame-
work can be trained from raw video directly.
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